02 Aralık 2013, 21:04 | #1 | |
Çevrimdışı
Kullanıcıların profil bilgileri misafirlere kapatılmıştır.
IF Ticaret Sayısı: (0) | Faktöriyel Konu Anlatımı Faktöriyel Konu Anlatımı Faktöriyel, 1' den n' ye kadar olan doğal sayıların çarpımıdır. n, bir doğal sayı olmak üzere, n faktöriyel n! = 1.2.3.4.5.6. ... .(n-2).(n-1).n veya n! = n.(n-1).(n-2).(n-3).(n-4). ... .5.4.3.2.1 şeklinde tanımlanır. 0! ile 1! ' in 1 olduğu varsayılacaktır. Yani, 0! = 1 ve 1! = 1 dir. 1' den büyük doğal sayıların faktöriyelleri ise şöyle hesaplanacaktır: • 2! = 2.1 = 2 • 3! = 3.2.1 = 3.2! = 3.2 = 6 • 4! = 4.3.2.1 = 4.3! = 4.3.2! = 4.3.2 = 24 • 5! = 5.4.3.2.1 = 5.4! = 5.4.3! = 5.4.6 = 20.6 = 120 • 6! = 6.5.4.3.2.1 = 6.5! = 6.120 = 720 • 7! = 7.6.5.4.3.2.1 = 7.6! = 7.720 = 5040 • n! = n.(n-1).(n-2).(n-3). ... .3.2.1 = n.(n-1)! = n.(n-1).(n-2)! • (2n)! = 2n.(2n-1)(2n-2). ... .3.2.1 = 2n.(2n-1)! = 2n.(2n-1).(2n-2)! • (3n)! = 3n.(3n-1).(3n-2). ... .3.2.1 = 3n.(3n-1)! = 3n.(3n-1).(3n-2)! • (n+1)! = (n+1).n.(n-1). ... .3.2.1 = (n+1).n! = (n+1).n.(n-1)! • (n-1)! = (n-1).(n-2).(n-3). ... .3.2.1 = (n-1),(n-2)! = (n-1).(n-2).(n-3)! Faktöriyelin Bazı Özellikleri: 1. n >= 2 olmak üzere, n! çift doğal sayıdır. 2. n >= 5 olmak üzere, n! sayısının son rakamı 0' dır. Yani, n! sayısının sonunda genelde 5 asal çarpanlarının sayısı kadar 0 rakamı bulunur. 3. n! - 1 sayısının sonundaki 9 rakamlarının sayısı, n! sayısının sonundaki sıfır rakamlarının sayısı kadardır. 4. x, y, n bir sayma sayısı olmak üzere, a bir asal sayı ise, y! = an.x koşulunu sağlayan en büyük n değerini bulmak için • y sayısı, a asal sayısına bölünür • Ardışık bölme işlemine, bölme sıfır oluncaya kadar devam edilir ve bölümler toplanır. 5. x, y, n bir sayma sayısı olmak üzere, a bir asal sayı değilse, y! = an.x koşulunu sağlayan en büyük n değerini bulmak için • Bu sayı asal çarpanlarına ayrılarak her asal sayı için aynı işlem yapılır • Bulunan asal sayıların kuvvetleri uygun biçimde düzenlenir. ÖRNEKLER: Örnek 1: 6! + 5! işleminin sonucu kaçtır? Çözüm: 6! + 5! = 6.5! + 5! = (6+1).5! = 7.5! = 7.120 = 840 Örnek 2: 37! sayısının sondan kaç tane basamağı sıfırdır? Çözüm: 37! sayısının içinde bulunan 5 asal çarpanlarının sayısını bulmalıyız. Bu işlemi iki farklı yolla yapabiliriz. Örnek 3: 0! + 1! + 2! + 3! + 4! + ... + 40! toplamının 20 ile bölümünden kalan kaçtır? Çözüm: 20 = 5 . 4 tür. Dolayısıyla, 4 ve 5 çarpanını bulunduran her sayı 20 ile tam bölünür. Yani, 5! ve 5! den büyük sayıların toplamı 20 ile tam olarak bölünür. Bu takdirde, 0! + 1! + 2! + 3! + 4! toplamının 20 ile bölümünden kalanı bulursak, istenen toplamın 20 ile bölümünden kalanı bulmuş oluruz. Buna göre, 0! + 1! + 2! + 3! + 4! = 1 + 1 + 2.1 + 3.2.1 + 4.3.2.1 = 1 + 1 + 2 + 6 + 24 = 34 34 ün 20 ye bölümünden kalan, 14 tür. O halde, 0! + 1! + 2! + 3! + ... + 40! toplamının 20 ile bölümünden kalan 14 tür. Örnek 4: 45! + 60! toplamının sonunda kaç tane sıfır vardır? Çözüm: Küçük sayının sonunda kaç tane sıfır varsa, toplamın sonunda da o kadar sıfır olacağından, 45 in 5 e bölünmesiyle, 45 = 5 . 9 + 0 ve 45 in 25 e bölünmesiyle 45 = 25 . 1 + 20 elde edilir. Dolayısıyla, 45! + 60! toplamının sonundaki sıfırların sayısı, bölümlerin toplamı olduğundan, 1 + 9 = 10 bulunur.turkeyarena.net İkinci yol olarak, 45 = 5 . 9 + 0, 9 = 5 . 1 + 4 olduğundan, sıfırların sayısı yine 1 + 9 = 10 olur. Örnek 5: 48! - 1 sayısının sonunda kaç tane 9 rakamı vardır? Çözüm: 48! in sonunda ne kadar sıfır varsa, o kadar 9 rakamı vardır. Dolayısıyla, 48 = 5 . 9 + 3, 9 = 5 . 1 + 4 olduğundan, 9 + 1 = 10 tane 9 rakamı vardır. Örnek 6: x ve n sayma sayıları olmak üzere, 35! = 3n.x ise, n nin alabileceği en büyük değer kaçtır? Çözüm: n nin alabileceği en büyük değeri bulmak için 35! in içindeki 3 asal çarpanlaının sayısını bulmamız gerekir. Bu işlemi yaparsak, Ardışık bölme işlemleri sonucunda bölümler şöyle bulunur: 35 = 3 . 11 + 2, 11 = 3 . 3 + 2, 3 = 3 . 1 + 0 Dolayısıyla, n nin alabileceği en büyük değer, 11 + 3 + 1 = 15 olur. Örnek 15: n bir doğal sayı olmak üzere, 83! / 14n işleminin sonucunun doğal sayı olması için, n' nin en büyük değeri kaç olmalıdır? Çözüm: 14 = 2 . 7 olduğu için, 83! in içerisinde kaç tane 7 çarpanı varsa, n' nin en büyük değeri odur. Dolayısıyla, 83 = 7.11 + 6, 11 = 7.1 + 4 olduğundan, n' nin alabileceği en büyük değer 11 + 1 = 12 olur. Örnek 7: m ve n ardışık çift doğal sayılardır. m > n olmak üzere, ise, n kaçtır? Çözüm: m > n koşuluna göre, n = 2k ve m = 2k + 2 olsun. Örnek 8: 1! + 2! + 3! + ... + 843! toplamı hesaplandığında birler basamağındaki rakam kaç olur? Çözüm:Her terimi tek tek hesaplayalım. 1! = 1, 2! = 2, 3! = 6, 4! = 24, 5! = 120, 6! = 720, ... 5! ve 5! den büyük sayıların birler basamağı 0 olacağından, bunları göz önüne almaya gerek yoktur. Bu nedenle, 5! den önceki sayıların toplamını alıp 10' a bölmeliyiz.turkeyarena.net Bu durumda, kalan birler basamağını verecektir. 1 + 2 + 6 + 24 = 33 olur ve Kalan 33 = 10.3 +3 bulunur. Dolayısıyla, birler basamağı 3 tür. Örnek 9: 8! + 9! + 10! toplamı aşağıdakilerden hangisine tam bölünemez? a) 750 b) 625 c) 250 d) 125 e) 10 Çözüm: 8! + 9! + 10! = 8! . (1 + 9 + 10.9) = 8! . 100 =8! . 102 = 8! . (2.5)2 = 8! . 22 . 52 8! de 1 tane 5 olduğundan, tüm toplamda 3 tane 5 bulunmaktadır. Dolayısıyla, 625 = 54 olduğundan, toplam 625 ile bölünemez. | |
|
Etiketler |
anlatımı, faktöriyel, konu |
Konuyu Toplam 1 Üye okuyor. (0 Kayıtlı üye ve 1 Misafir) | |
| |
Benzer Konular | ||||
Konu | Konuyu Başlatan | Forum | Cevaplar | Son Mesaj |
İkizkenar Üçgen Konu Anlatımı | Violent | Geometri | 0 | 30 Kasım 2013 22:06 |
Eşkenar Üçgen Konu Anlatımı | Violent | Geometri | 0 | 30 Kasım 2013 21:59 |
Doğrunun Denklemi Konu Anlatımı | Violent | Geometri | 0 | 30 Kasım 2013 21:44 |
Kütlenin Korunumu Konu Anlatımı | Alhwin | Ödev ve Tezler | 0 | 30 Kasım 2011 22:54 |
C# Konu Anlatımı (Ders3) If-Else Örnekleri | Sunay | C# | 2 | 09 Mayıs 2011 06:02 |