IRCForumları - IRC ve mIRC Kullanıcılarının Buluşma Noktası
  reklamver

Etiketlenen Kullanıcılar

Yeni Konu aç Cevapla
 
LinkBack Seçenekler Stil
Alt 17 Ekim 2014, 10:28   #1
Çevrimdışı
Kullanıcıların profil bilgileri misafirlere kapatılmıştır.
IF Ticaret Sayısı: (0)
IF Ticaret Yüzdesi:(%)
Uzay Geometrisi-BAZI KAVRAM ve TANIMLAR




BAZI KAVRAM ve TANIMLAR
Geometride nokta, doğru, düzlem ve uzay gibi bazı kavramlar tanımsız olarak kabul edilir. Kalemin veya sivri bir şeyin ucunun bıraktığı ize nokta diyebiliriz. Cetvelin kenarı ile bir doğru çizebiliriz. Sınıfın duvarı, pencere camı birer düzlemdir. Odanın içerisi, herhangi bir cismin kapladığı yer birer uzay belirtirler.
Nokta : « . » Biçiminde ifade edilir ve genellikle büyük harfle gösterilir. Nokta boyutsuzdur.
« . » nokta, « . A” A noktası
Doğru : iki ucuna ok işareti koyulmuş düz bir çizgi ile gösterilir. Doğru küçük harfle veya üzerindeki iki nokta ile gösterilir.
d »d doğrusuveya AB doğrusu diye okunur. Buradaki A ve B noktaları doğrunun birer elemanıdır.
A Îd ve B Î d biçiminde yazılır.
Farklı iki noktadan bir tek doğru geçer.
Farklı iki nokta bir tek doğru belirtir.
Doğru bir boyutludur. Yani sadece uzunluk söz konusudur.
Düzlem: Uzunluğuna ve genişliğine doğru sonsuza uzayıp giden düz bir yüzeydir. Düzlem iki boyutludur. Sayfa üzerinde paralelkenar gibi gösterilebilir. Paralelkenarın köşesine harfle ismi yazılabilir.
şekildeki düzlem E düzlemi diye isimlendirilir.
Burada A, B ve C noktaları E düzlemi üzerindedir. Dolayısıyla B ve C noktalarından geçen d doğrusu da E düzlemi üzerindedir.A Î E
B Î E
C Î E
d Î E
Aynı doğru üzerinde olmayan farklı üç nokta bir düzlem belirtir.
Bir doğru ile, bu doğru üzerinde olmayan bir nokta, bir düzlem belirtir.
Bir doğrunun farklı iki noktası bir düzlem üzerinde ise bu doğru (doğrunun bütün noktaları) bu düzlem üzerindedir.
1. Düzlemle Doğrunun Durumları

Bir doğru düzlemin ya üzerinde, ya dışındadır veya düzlemi bir noktada keser.
d1Ça = d1
d2Ç a = Ø
d Çb = {K}
K noktası kesişen bir doğru ile bir düzlemin arakesitidir.

2. Düzlemde İki Doğrunun Birbirine Göre Durumları

Paralel farklı iki doğru bir tek düzlem belirtir.
Her paralel farklı iki doğrudan bir tek düzlem geçer.
Kesişen farklı iki doğru bir tek düzlem belirtir. Her kesişen farklı iki doğrudan bir tek düzlem geçer.
Bir düzlemde farklı iki doğru ya paraleldir, ya da bir noktada kesişirler.
d1Ç d2 = Ø
l1Ç l2 = {A}
Üst üste çizilen çakışık doğrular bir tek doğru kabul edilir.
3. Düzlemde Üç Doğrunun Birbirlerine Göre Durumları

Üç doğru paralel olabilir.
d1 // d2 // d3 d1Ç d2Çd3 = Ø
Düzlemde paralel olan iki doğrudan birine paralel olan doğru diğerine de paraleldir.
d1 // d2 ve d2 // d3 ise d1 // d3 olur.
Yalnız ikisi paralel ise, üçüncü doğru paralel doğruları birer noktada keser.
l1 // l2
l1Ç l3 = {A}
l2Ç l3 = {B}
Düzlemde paralel iki doğrudan birini kesen bir doğru, diğerini de keser.
Düzlemde paralel iki doğrudan birini dik kesen bir doğru diğerini de dik keser.

Üç doğru bir noktada kesişebilir.
k1Ç k2Çk3 = {P}
Üç doğru ikişer ikişer kesişebilir.
t1Ç t2 = {A}
t1 Ç t3 = {B}
t2 Ç t3 = {C}
t1 Ç t2 Çt3 = Ø

4.Düzlemde Nokta İle Doğrunun Durumları

Doğrunun üzerindeki bir noktadan geçen ve bu doğruya dik olan bir tek doğru çizilebilir.
d2 doğrusu A'dan geçer ve d1 e diktir
Doğrunun dışındaki bir noktadan geçen ve bu doğruya dik olan bir tek doğru çizilebilir.
d3 doğrusu B'den geçer ve d1 e diktir.
Doğrunun dışındaki bir noktadan geçen ve bu doğruya paralel olan bir tek doğru çizilebilir.
l2 doğrusu A'dan geçer ve l1 ile paraleldir.
5. Doğruların Düzlemde Ayırdığı Bölge Sayısı
Genel olarak, n adet doğru bir düzlemi en az (n + 1) bölgeye (paralellik hali), en
fazla

bölgeye ayırır.

İki doğru, bir düzlemi en az 3 bölgeye, en fazla 4 bölgeye ayırır.

Üç doğru, bir düzlemi en az 4 bölgeye, en fazla 7 bölgeye ayırır.

Dört doğru, bir düzlemi en az 5 bölgeye, en fazla 11 bölgeye ayırır.
UZAY KAVRAMI VE UZAYDA DOĞRULAR
Cisimlerin kapladığı yer ve içinde bulundukları mekan uzaydır. Doğruda sadece uzunluk, düzlemde uzunluk ve genişlik söz konusu idi. Uzayda ise uzunluk ve genişliğin yanında bir de yükseklik kavramı vardır. (Derinlikte denilebilir.) Dolayısıyla uzay üç boyutludur. Uzayda x, y, z eksenleri olduğu için kartezyen koordinat olarak R x R x R veya R3 ile sembolize edilir.
Aşağıda üç boyutlu cisimlerin bazıları belirtilmiştir.


1. Uzay Belirtme Aksiyomları

Dördü aynı düzlemde bulunmayan farklı dört nokta uzay belirtir.
E düzlemindeki A, B, C noktaları ile düzlem dışındaki P noktası, uzay belirtir.
Bir düzlem ile bu düzlemin dışındaki bir nokta, uzay belirtir.
E düzlemi ile bu düzlemin dışındaki P noktası uzay belirtir.
Bir düzlem ve düzlem üzerinde olmayan bir doğru uzay belirtir.
d doğrusu F düzleminde olmadığından, F düzlemi ile d doğrusu uzay belirtir.

Uzayda farklı iki düzlem ya paraleldir ya da kesişirler.
Paralel olmayan farklı iki düzlem daima kesişir.
Farklı iki düzlem daima uzay belirtir.
Kesişen iki düzlemin ortak noktalarının oluşturduğu doğruya arakesit doğrusu denir.
Farklı K ve L düzlemleri uzay belirtir. E ve F düzlemlerinin kesişim kümesi d doğrusudur. E Ç F = d dir.

__________________
#MustafaKemaLAtatürkTorunuyum..ღ ❦

{22~02~`22..∞}
{09~09~`22..ღ}
 
Alıntı ile Cevapla

IRCForumlari.NET Reklamlar
sohbet odaları eglen sohbet reklamver
Cevapla

Etiketler
geometrisibazi, kavram, tanimlar, uzay, ve


Konuyu Toplam 1 Üye okuyor. (0 Kayıtlı üye ve 1 Misafir)
 

Yetkileriniz
Konu Acma Yetkiniz Yok
Cevap Yazma Yetkiniz Yok
Eklenti Yükleme Yetkiniz Yok
Mesajınızı Değiştirme Yetkiniz Yok

BB code is Açık
Smileler Açık
[IMG] Kodları Açık
HTML-Kodu Kapalı
Trackbacks are Kapalı
Pingbacks are Açık
Refbacks are Açık


Benzer Konular
Konu Konuyu Başlatan Forum Cevaplar Son Mesaj
Öklid Geometrisi PySSyCaT Geometri 0 17 Ekim 2014 10:25
Kavram Öğretiminde Kullanılan Materyaller - Kavram Haritası Elysian Eğitim Etkinlikleri Ve Materyaller 1 25 Nisan 2014 14:13
Kavram Öğretiminde Kullanılan Materyaller - Kavram Ağı Elysian Eğitim Etkinlikleri Ve Materyaller 0 25 Nisan 2014 09:26
Hayatin Geometrisi Phi Felsefe 0 19 Şubat 2010 15:10