Konu: Geometri
Tekil Mesaj gösterimi
Alt 29 Nisan 2009, 16:20   #2
Çevrimdışı
YapraK
Kullanıcıların profil bilgileri misafirlere kapatılmıştır.
IF Ticaret Sayısı: (0)
IF Ticaret Yüzdesi:(%)
Cevap: Geometri




Abbasi Devleti (750-1258) Hz. Muhammed'in amcası Abbas'ın soyundan gelen Ebul Abbas'ın kurduğu devlet. 750 yılında Abbasiler Emevi yönetimine karşı ayaklanarak halifeliği ve iktidarı ele geçirdiler. Bu tarihten başlayarak Abbasiler 1258'e kadar İslam dünyasının büyük bölümüne egemen oldular.
...Detaylı bilgi için linke tıklayınız.Biruni ile mektuplaşan Biruni tam adı Abu'l-Reyhan Muhammed Bin Ahmet El-Biruni El-Harizmi, sadece Türk ve İslam dünyasının değil, dünyanın en büyük bilim adamlarından biri sayılmaktadır. 15 Eylül 973 tarihinde Ceyhun nehri kıyısındaki Hive kasabasında doğmuştur. 1048 yılında Gazne'de de ölmüştür. Biruni hastalıkları tedavi konusunda değerli bir uzmandı. Yunan ve Hint tıbbını incelemiş, Sultan Mes'ud'un gözünü tedavi etmişti. Otların hangisinin hangi derde deva ve şifa olduğunu çok iyi bilirdi. Eczacılık
...Detaylı bilgi için linke tıklayınız.Ebü'l-Cud, çemberi dokuz eşit parçaya ayıran bir metod geliştirmiştir.

Ömer Hayyaö ve Tûsî’nin Euclid’in paralel doğru teorisi ile ilgili beşinci postulatın incelenmesi yeni bir devrin başladığına işâret eder. Ömer Hayyân’ın Fî Şerhi mâ Eşkale min Müsaderat Kitabı Euclid (Euclid Elemanlarının Zorluğu Üzerine) adlı eseri bir anlamda Euclid dışı geometrilere açılan ilk kapıdır. Bu Müslüman geometri alimleri ve kitapları, Rönesanstan sonra Avrupa’da yetişenlere rehberlik ettiler.

Batıda geometrinin gelişmesi ve doğu ile aralarındaki bağın yeniden kurulması, ancak Rönesansla mümkün oldu. Euclid’in paraleller postulatının ilk tenkidcileri, bu postulatın doğruluğundan değil, açık bir noktanın olmayışından şüphelendiler. Bu sebeple postulatı bir tarafa bırakarak, açıklığı olan başka bir postulat koymaya çalıştılar. Aynı problem 13. asırda İranlı Matematikçi Nasireddin Tusi tarafından yeniden ele alındı.

On sekizinci asırda paraleller postulatı üstüne Avrupa’da Papaz Sacheri, Legender, Lambert gibi matematikçiler ve 19. asırda Alman Matematikçi Gauss tarafından çeşitli çalışmalar yapıldı. Bu araştırmalardaki başarısızlık, bu postulatın “kabul edilebilir” özellikteki açık önermelerden faydalanarak ispat edilemeyeceği düşüncesini ortaya koydu. Hakikaten çok geçmeden bu düşünce Bolyai (1832)de, Lobachevsky (1855)de “paraleller postulatı” yerine “Lobacevski postulatı”nı (Bir doğruya bir doğru dışındaki her noktadan iki paralel çizilebileceğini kabul eden postulat) koyarak, yeni bir geometri kurulabileceğinin farkına vardılar. Böyece “Hiperbolik Geometri” denilen yeni bir geometrinin temelleri atılmış oldu. Daha sonra Riemann paralelliğini kabul etmeyen “Eliptik Geometri”nin temellerini attı.

Geometride ele alınan bütün konular nokta, çizgi, yüzey ve hacimlerle ifade edilir. Şekilleri bu yönlerden ele alıp, özelliklerini inceler. Geometrideki bu temel ifâdelerden nokta en ilginç olanıdır. Noktanın eni, boyu, yüksekliği, alanı ve hacmi mevcut değildir. Bu sebepten de noktanın müstakil bir tarifi mevcut değildir. Ancak iki doğrunun kesişim kümesi olarak tarif edilebilir. Buna mukabil geometrinin diğer ifâde araçlarından çizgi, yüzey ve hacim en az bir boyuta sâhib olan ifâdelerdir. Çizgi, sadece uzunluğu olan (bir boyutlu); yüzey, uzunluğu ve genişliği olan (iki boyutlu); hacim ise uzunluğu, genişliği ve yüksekliği olan (üç boyutlu) ifadelerdir.

Her ilim dalında olduğu gibi geometrinin de üzerine kurulu bulunduğu bir temeli mevcuttur. Bu temel üzerinde kendi ifâde birimleri ile, meseleleri (problemleri) açıklığa kavuşturmaya çalışır. Bu temeller aksiyom, postülat, tanım (târif), teorem ve geometrik yer isimlerini alır. Bunlardan aksiyom, ispata ihtiyaç duyulmadan, kabul edilen önermelerdir. (Bkz. Aksiyom)

Aksiyomlardan (doğru veya yanlış) büyük ölçüde faydalanılır. Doğru aksiyomlar doğru, yanlış olanları ise yanlış neticeler meydana gelmesine sebebiyet verirler. Geometrik aksiyomlar ortaklık, sıra, denklik, paralellik ve süreklilik aksiyomları olmak üzere beş gruba ayrılır.

Postülatlar, mantıkî olarak doğruluğu kabul edilmesine rağmen, doğru veya yanlış olduğu ispat edilmeyen önermelerdir. Geometride postülatların kullanılması bâzı problemlerin çözümünde önem arz etmektedir.


Alıntı.

 
Alıntı ile Cevapla

IRCForumlari.NET Reklamlar
sohbet odaları eglen sohbet sohbet